List of questions

  • 2815

    What chronic conditions are most apt to be treated by bioelectronic medicines that are not already being served?

  • 2875

    How can clinical insight be best captured to calibrate neural therapies?

  • 2878

    Which neuromodulation therapies would be most improved if the dosage could be constantly change in real time based on biomarkers?

  • 2857

    What is the standard of evidence required for clinicians to adopt novel neuroimaging technology, and how does it differ from that required for therapeutic interventions?

    As a provider of neuroimaging software solutions we see a slower adoption rate compared with more "traditional" medical devices/technology.

  • 2860

    As the number of AI medical devices for clinical use is rapidly increasing, how can payers, hospitals, and companies work together to avoid fragmentation and simplify delivery of large numbers of specialised technologies without burdensome contracting, IT, data protection, and installation/training overheads for each one?

    Based on our experience - particularly in a UK/NHS environment - where so many obstacles are placed before everyone who is eager to implement a new technology.

  • 2902

    What are the pros, cons and ethical implications of bringing the benefits neurotechnology to everyone including not just patients, but also healthy individuals?

    Non-invasive brain stimulation is safe and modestly effective, it has been sold in the non-clinical market for enhancement of motor abilities, cognitive abilities, and more recently weight loss, sleep, etc. As we're driving the technology to make the effects of such stimulation more powerful and more instant, do you foresee any safeguards or limitations that need to be put in place? Also, in the EU, the regulations are changing to put devices like this under Medical Device Regulations, do you believe this is fair to consumers and also to businesses?

  • 2905

    What is the most unexpected biomarker you could monitor and do you think we could affect it with brain stimulation?

    We have a closed-loop stimulation system where we can measure a parameter (currently EEG and ECG) and attempt a range of brain stimulation protocols (currently electrical and audio/visual) to choose the most effective for an individual. We're looking for collaborations to test and expand our range of applications in a non-clinical space (e.g. for concentration, rejuvenation, de-stressing etc.) as well as for clinical applications, and with a track record of getting grants, we can also look into joint grant applications.

Ceryx Medical
  • 2806

    What are the best and least invasive methods or materials for reading the raw electrical signals of the nervous system, chronically?

    Any discussion with material scientists, bioengineers would be welcome. Beyond this: colleagues with interest in neuroscience and brain-computer interfaces.

Hobbs Rehabilitation
  • 2821

    Can advanced technologies really solve the problems of sub clinical dosage of intervention in neuro rehabilitation?

    Research suggests that the rehabilitation of neurological patients with conditions such as stroke, or other aquired brain injury is blocked by inadequate dosage of treatment. Researchers and developers are succeeding in bringing clinical rehabilitation technologies to market, including exoskeletons, sensor based rehabilitation systems and electrical stimulation devices. There is however limited uptake into clinical practice. The neuro population is heterogenous, patient impairments are multiple and complex, the clinical services are poorly resourced and there is limited evidence of cost effectiveness of specific treatments. In the light of the above can advanced technologies really solve the problems of sub clinical dosage of intervention in neuro rehabilitation? If so what needs to be done to enable this to become a reality in clinical practice This is the basis for Hobbs Rehabilitation developing the MINT (Masterclasses in NeuroTechnology) concept.

Immersive Rehab
  • 2818

    What are the optimal ways to perform clinical validation of neurotechnology solutions in a clinical setting and potential bottlenecks to look out for?

    At Immersive Rehab we aim to improve neurorehabilitation services for people with neurological conditions such as stroke, MS and spinal injury. Long term clinical validation is key for our digital therapeutic solution, so what are the optimal ways to perform clinical validation of neurotechnology solutions in a clinical setting and potential bottlenecks to look out for?

jULIEs Bioelectronics
  • 2916

    Which are the best unsupervised methods to analyze very large scale real-time neuronal data today?

  • 2919

    What developments can be expected in the next 5 years in battery chemistry research?

  • 2922

    What developments are expected in high-speed low-power electronics in the next 3 years?

  • 2925

    What are current unmet needs in neurosurgery?

  • 2853

    Thinking about the emerging field of bioelectric medicine, how might we shift from pharmacological doses to digitally controlled electrical doses by directly stimulating the nervous system, in a system that is heavily weighted towards the use of medication based treatments?

  • 2856

    How might we use AI to help develop an objective measure of stress and what are the novel biomarkers that could be used and collected by an ear based device?

  • 2824

    What are the cutting edge real-time deep learning classification methodologies on EEG data and within neurotechnology?

    New analysis methods for neurofeedback

  • 2827

    What trusted methodologies are there to corroborate other biosensor and digital data with brain data?

    Brain-sensing wearables have a barrier to entry for consumers to use with products as not many like to wear something on their head (that arent socially acceptable headphones). Also you dont want dependancy on these wearables for your product to work.

Oxford Endovascular Ltd
  • 2868

    What Flow diverter devices do you use to treat intracranial aneurysms and how would you improve the mode of device placement?

    Oxford Endovascular operates in the endovascular cerebral aneurysms repair (ECAR) market where coiling and clipping is used.

    Minimally invasive endovascular treatment has become the standard treatment for aneurysms and flow-diversion is a rapidly growing therapy gaining popularity with clinicians. The early evidence base has some advantages of flow-diversion over coiling whilst highlighting challenges with existing technology. This evidence has led a number of US hospitals to begin using flow-diverters as the first-line treatment for all un-ruptured aneurysms. This trend is expected to continue.

    Despite the growth, prospective current flow diverters have drawbacks due to issues with device placement. Based on market feedback a next generation device would need to show improvements.

  • 2871

    What challenges do you encounter when using flow diverter devices?

    Flow diverters are made of a braided woven mesh design and feedback suggests that placement accuracy and deployment are fundamental to cases going well.

  • 2874

    What do support staff say about improvements that could be made to flow diverter devices that you use?

    Support staff in the operating environment play a vital part in ensuring that interventional cases go well.

Reckitt Benckiser
  • 2973

    What role do you see for neuroimaging techniques – both existing approaches and novel approaches being piloted – within Oxford and beyond - in clinical research and product development / sensory enrichment?

    i. What additional insights can these methodologies provide to patient experience of relief?

    ii. Is there a role for these techniques in providing greater clarity to areas where subjective measures are not enough (e.g. measures of discomfort in non-verbal populations, such as infants and children)?

    Of these techniques, which are recognised by regulators? Which are available now and which require development?
    What are the strengths and weaknesses/limitations of current approaches?

  • 2976

    What are the current developments in neuroscience which can optimise the use of health digital tools to promote healthy life style and emotional wellbeing and whether these tools been validated?

    Clinical studies showed the efficacy of health interventions in enhancing cognition and well-being in older age, the challenge is how to best motivate aging adults to engage in beneficial health behaviours in their daily lives. For example, people know that being more physically active and healthy eating are good for them, but they still don’t do it. According to Duke university , recent neuroscientific and psychological research show that the motivation is changing with age; hence, they launched a project to investigate the role of digital tools.

Senso Medical
  • 2863

    How do researchers, clinicians & early stage companies tackle the need for more personalised therapies in the neuro space and translate these ideas into medical devices given the complexities of product development, changes in Medical Device Regulation (MDR) and Quality Management Systems?

    SensoMedical’s experts have years of experience perfecting the development and commercialization of neurotechnology. Developing devices in the neurotechnology space is a complex science that requires expertise in multiple fields including electrophysiology, biology, materials science, mechanical engineering, electronics, QMS, regulatory experience, etc.  SensoMedical is the first company focused entirely on products for neurology, neuroscience, CNS  and peripheral nerves. We can do subcutaneous, transcutaneous, peripheral, deep brain, intravascular and implanted. We can do end to end product development or work with existing proof of concepts from optimisation, prototyping, supply chain through to viable medical device.

  • 2865

    Can you discuss any new developments using MEG and specific biomarkers for neurodegenerative diseases and neuropsychiatric conditions

    Translational research for human brain